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ABSTRACT

Microtubules are tubular biopolymers of the cytoplasm. They play numerous critical roles in a cell such as
providing mechanical support and structural tracks for the anchoringand transport of chromosomes, organelles,
and vesicles. They also form the microtubule assembly, which is critical for the coordination of cell division and
migration. Abnormal function of the assembly is involved in cell pathology suchas neurodegenerative diseases
and cancer. To date the study of the dynamics of the microtubule assembly hasbeen mostly qualitative by visual
inspection. Some quantitative statistics have been computed for the most dynamicpart of the assembly, namely,
the microtubule outer tips located close to the cell cortex. Typically, the locationsof those tips are manually
annotated in a time sequence, which is very tedious. In this work we have developed a method to automatically
track microtubule tips so as to enable a more extensive and higher throughput quantitative study of the microtubule
assembly. Our approach first uses the entire frame sequence to estimate theregion where a tip is expected to lie. In
that region a tip feature is computed for all time and used to form the tip trajectory. Last, we evaluate our method
with phantom as well as real data. The real data show fluorescently tagged living cells imaged with epifluorescent
microscopy or confocal microscopy.

Keywords: Confocal microscopy, microtubule plus tips, microtubule dynamics, tubular structure segmenta-
tion, motion tracking.

1. INTRODUCTION

1.1. Significance of Microtubules

Microtubules are biopolymers of the cytoplasm. They have a diameter of≈ 25 nm and are composed of10 − 15
tubulin protofilaments [1]. In mammalian interphase cells one end is anchored atan organelle called the micro-
tubule organizing center (MTOC), which is positioned in the cell center nextto the nucleus. Hundreds of micro-
tubules emerge radially from the MTOC like spokes out of a wheel. Two illustrations of their assembly are shown
in figure 1. In addition to providing structural stability the microtubules also serve as delivery tracks for the active
transport of organelles and vesicles. For instance, in a neuron they move vesicles out to the terminals of centimeter
long axons in minutes to hours, whereas free diffusion would take years.They also act as potential mediators of
cell protein signalling. The microtubules can come in close proximity to the cell cortex and dynamically probe the
cell periphery by rapidly growing with polymerization and shrinking with depolymerization [1, 2, 3]. Their outer
tips are pivotal in chromosome repositioning during mitosis as well as cell migration[4].

Microtubules also play critical roles for cells in pathological states. Cell migration is essential for wound heal-
ing. Abnormalities in the microtubule assembly have been correlated with the severity of Alzheimer’s symptoms
[5]. Cancerous cells exhibit abnormalities in microtubule function related to cell division. Thus, microtubules
have been identified as an important target for anticancer drugs [6]. Chemical entities such as the taxanes inhibit
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Fig. 1. Two viewpoints of a simulation of the microtubule assembly.The microtubules in yellow originate
from the microtubule organizing center near the center of the cell, next to the nucleus. They end close to
the cell membrane.

the polymerization of microtubules. Thus, they stabilize the assembly and retardcancer growth. Microtubule
drugs are used in the treatment of a variety of tumor types such as leukemia, cancers of the lymphatic system, and
breast cancer. Several novel anticancer compounds with a similar effect on the microtubules are in active clinical
development with the goal of identifying new drugs with improved specificity. It is essential to elucidate their
specific effects on the microtubule assembly. The latter with the goal of improving the therapeutic index with
reduced toxicity [6]. Current in vivo screening is tedious as microtubule data is analyzed by hand. Automation
can facilitate both basic science analysis of microtubules as well as enable higher throughput screening of new
microtubule drugs. Thus, the general goal of the automated processing of data of the microtubule assembly is to
efficiently quantify its structure and dynamic behavior.

1.2. Related Work on Segmentation and Motion Tracking of Microtubules and Tubular Structures

To our knowledge the study of the microtubule assembly in microscopy andin particular in epifluorescent and con-
focal microscopy data has only been done qualitatively by observation [7,8]. Some limited quantitative statistics
of the microtubules have typically been reported from manual annotation [9, 10, 11, 2, 3]. The manual approach is
time consuming and limiting. Only a small number of clearly distinguished microtubules are tracked for a limited
temporal extent. Human operators annotate the position of the tip. That datais later used to compute the rates
of polymerization and depolymerization by assuming that the microtubules are straight lines between the tip point
and an arbitrary reference point in the image. Moreover, manual tracking is subjective and is not reproducible.
The automatic processing of data showing the motion of the microtubule assembly has also been limited in the
number of tips tracked, the temporal extent of the tracking, and the number of sequences on which tracking has
been evaluated [12, 13, 14, 15, 16, 17].

Algorithms for the processing of the motion of tubular structures typically consist of preprocessing, tubular
segmentation, motion tracking, and summarization of the motion. Some preprocessing techniques have been edge
filtering [18], corner filtering, line filtering [19], histogram based intensitythresholding [20], as well as mor-
phological operations [21]. A combination of such techniques has beenused extensively for the extraction of
microtubules and other subcellular filamentous structures. A typical sequence of steps has been to enhance the
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images with filtering, threshold the images based on intensity, and subsequently detect the tubular structure and
their tips with morphological operations [12, 15, 16, 17, 22]. A major limitation of these approaches has been
the requirement to have an intensity threshold to segment the foreground of the microtubule assembly from the
background. The selection of the threshold is difficult to do systematically.The threshold selection in a time se-
quence is also complicated by the depletion of the fluorescence with time. Moreover, morphological operations
can introduce an error in the estimate of the tip location.

Several alternative approaches to the segmentation of a tubular structurehave been suggested that do not
require an intensity threshold. Such an approach has been to start from asingle point and perform sequential
intensity tracking [13, 23, 24], or sequential vector field tracking [25].These segmentation algorithms are based
on local computations and can be noise sensitive. An alternative approachto segmentation of tubular structures
has been the use of minimal global paths [26, 27, 28, 29, 30, 31, 32, 33]. These paths are streamlines of cost
maps computed by accumulating intensity or vector field information. The global approaches to segmentation
of a tubular structure that are based on monotonically growing potentials require the specification of both end
points of the structure [27, 29, 30, 32]. The minimal global direct pathsdo not require a threshold and are more
robust to noise. However, they are unable to represent the local characteristics of filamentous structures or resolve
clutter of filamentous structures in their subcellular assemblies. In this workwe combine the local sequential
and the minimal path approaches. We use a minimal path approach to take advantage of its noise robustness and
its ability to favor the differential geometric properties of the microtubule axis. However, we apply the minimal
path approach locally over spatially restricted regions. This improves its ability to represent local structure of
microtubules.

The detection of the microtubule tip location is a difficult problem due to the low signal to noise ratio at that
point. This is mainly a result of the diffraction during the imaging process, and the breakup of a microtubule at
its outer tip point into its constituent protofilaments. The tip detection is also complicated by the curvature of
the microtubule. The microtubule tip point in our work is characterized locallyusing level sets of minimal paths
defined similarly as for microtubule segmentation. They are used becauseof their robustness to noise and their
ability to represent local microtubule curvature.

Tubular segmentation techniques have been used in microscopy to extract other cellular biopolymers such as
actin [20] and chromosomes [23], as well as neurites at the cellular level [34]. Several tubular structures have
also been extracted at the organ imaging level such as vasculature from magnetic resonance angiography data
[33], paths along the colon for virtual colonoscopy [26, 27, 28], white matter fibers from diffusion tensor imaging
data [29, 32], and the bronchial tree [35].

A traditional approach to motion quantitation of microtubules, namely kymography [14], assumes that a mi-
crotubule moves predominantly along its axis. The cross section at a pointalong its axis is used to characterize
the intensity variation as a wave. More recently, Saban et al suggested anautomated tip tracking algorithm [16].
Their tracking algorithm, however, favors points along the microtubule axisrather than the tip points. Moreover, it
requires an intensity threshold that is not set systematically [16]. There has also been work on motion tracking of
tubular structures at the organ imaging level. Some examples have been the tracking of the motion of vasculature
in coronary cineangiography [36], the retina in retinal imaging [37], and catheter monitoring [38].

In the literature the microtubule tip motion has been quantified by its speed, motion duration, and transition
rates between polymerization and depolymerization [9, 10]. In this work we also suggest the use of the power
spectral density of the microtubule length as a function of time. It can represent the cyclical changes between poly-
merization and depolymerization of a microtubule in steady state as well as theacceleration in the polymerization
of a microtubule. Accurate automatic or semi-automatic quantification of microtubule dynamics allows a more
extensive quantification of the dynamics in the time and the number of tips tracked. It also improves the accuracy
of the estimates of the tip dynamics and makes the computations objective and reproducible. Moreover, it enables
the measurement of the length of a microtubule along its axis. A reliable quantitative approach for automatic
determination of the motion of microtubules and their outer tips has not been evident in the literature. In this work
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we present an algorithm that addresses the problem of motion tracking ofthe microtubule outer tips and compute
measures to meaningfully summarize their motion [9, 10].

1.3. Related Work in Microscopy

There has been extensive work on motion tracking in microscopy for particles that have the shape of dots such
as individual atoms, cytoplasmic vesicles, and cytoplasmic organelles [39]. Typically dot tracking algorithms
consist of a feature detection step and a trajectory linking step. The feature detection is usually performed with
model based template filters such as wavelets [40]. Some of the trajectorylinking techniques have been cross-
correlation [41], distance between centers of mass [42], and distancebetween Gaussian functions fitted to intensity
profiles [43]. Some of the main problems in the tracking of dots in microscopy have been the possible temporary
disappearance of a dot from an image sequence, the possible spuriousdetection of dots in individual frames of
a sequence, as well as the overlap of dots in some frames. These complications have been addressed at the
trajectory linking step using advanced probabilistic techniques such as Kalman filtering [44, 45] and graph based
approaches [46] between consecutive frames.

Another suggestion for trajectory linking has been to use spatiotemporal level sets [40]. This approach, how-
ever, can potentially lead to a trajectory progressing backward in time. Moreover, spatiotemporal tracking restricts
the motion between two consecutive frames to be at most one voxel, which is the radius of the neighborhood used
for the level set propagation. In general, spatiotemporal approachesin microscopy are also hampered by the
bleaching of the fluorescence with time and the temporal smoothing that maylead to tip points that do not lie on
the microtubules in some frames. Motion tracking in microscopy has also been used to track entire cytoplasmic
assemblies [47, 48] and even entire cells [49]. Many researchers claim superresolution in localization [42]. In
microscopy the motion of dots has been characterized by measures such as diffusivity and directionality [50, 51].

2. METHODS

We first summarize some properties of the microscopy data relevant to this work. Subsequently, we describe the
various stages of the motion tracking algorithm [52]. A block diagram summarizing the algorithm is in figure 6.

2.1. Image Data

In vivo epithelial cells provide the substrate for this work. The cells were transfected with tubulin tagged with
a fluorescent protein. They were imaged with epifluorescent microscopyor confocal microscopy to give a video
sequence. The data was acquired for a 2D plane over time. The point spread functions are assumed to be Gaussians.
The spatial resolution is≈ 130 nm/pixel. In confocal microscopy the depth resolution is≈ 500 nm. The low
interframe time required to closely capture the dynamics of the microtubules keeps the signal to noise ratio low.
In 2D data the microtubules can be approximated as bright ridges with a Gaussian cross section. The extent of
the Gaussian within one standard deviation of the peak gives the effectivemicrotubule widthw. A microscopy
sequence of durationt = 0, . . . , τ − 1 consists of frames represented by the mapVt : D → ℜ from a 2D domain
D of dimensionx = (x, y) to intensity.

2.2. Feature Detection

The frames of the sequence are viewed as gray value functions. They are enhanced using a line contrast feature
based on the extrema of the second spatial Gaussian derivative [30, 53]. This feature is computed at all pixels of
the sequenceVt(x) to giveI ′

t(x), ∀x, t. The extrema of the second Gaussian derivatives at pixelx are computed
from the eigenvector decomposition of the spatial Hessian matrix at that pointto give the eigenvaluesλ1(x) and

4



λ2(x). The line contrast feature is computed from:

I ′
t(x) =

−λi(x) if λi(x) > λj(x) ∩ λi(x) < 0 , where (i, j) = (1, 2), (2, 1)
0 otherwise.

(1)

The image derivatives are computed with Gaussian derivative filters of standard deviationσ = w, wherew is the
microtubule width.

(a) First frame of a
real sequence

(b) Segmented microtubules over
the first frame

(c) Extrapolated microtubules over
the average frame

(d) Candidate tip points at the
intermediate frame

Fig. 2. The first frame of the sequence is in (a). The segmentations of the microtubules over this frame are shown in
(b). The average frame together with the extrapolations of the microtubulescomputed based on it are shown in (c).
These curves are subsequently refined for each frame. The curves expected to contain the tips at the intermediate,
18th frame, of the sequence are shown in (d).

2.3. Segmentation of a Microtubule

A microtubule is extracted in terms of consecutive segments [54]. Each segment is extracted based on its neighbor-
hoodDsegm ∈ D. The neighborhood is formed using a local coordinate system(xsegm, ysegm) = (x, y)−Osegm,
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whereOsegm is the origin. The origin for the extraction of the first segment is the tip pointxtip,0 at the first frame
of the sequence,I ′

0. The valid and non-null neighborhood is within the circle‖(xsegm, ysegm)‖ ≤ 4w and a sur-
rounding annulus is nulled. The originOsegm for the extraction of all subsequent segments is the most recently
segmented pointxrec. The valid neighborhood for the extraction of subsequent segments is also within the circle
‖(xsegm, ysegm)‖ ≤ 4w. Moreover, thexsegm-axis is the microtubule tangent and the neighborhood is limited to
the regionxsegm ≤ 2w, wherew is the microtubule width. Figure 3 shows a coordinate system centered atxrec.

A microtubule segment in domainDsegm of lengthl can be represented by the curveS(s) : [0, l] → Dsegm,
wheres is the arc-length parameter. A microtubule segment has two boundary pointsS(0) = x0 which isxrec

andS(l) = x1 which satisfiesx1 ∈ ∂Dsegm. The set of all curves with these boundary points isBx0,x1 . Every
pixel atx = (x, y) ∈ Dsegm is associated with costQ. The pixel costQ is the product of two factors. The first
is proportional to the reverse intensityQ1 = 1 − I ′(x)/I ′

max, whereI ′
max = maxx I

′(x). It is isotropic and
favors microtubule fluorescence. The second factor,Q2, is anisotropic and favors microtubule centerline. It uses
directional parameters associated with every pixel, namely vectorsd1 andd2, as well as scalarsr1 andr2. The
pixel cost is non-negative and is given by:

Q(x, e) =

(

1 −
I ′(x)

I ′
max

)

×

(

1

‖e‖

i=2
∑

i=1

∥

∥

∥

∥

di.e

ri + ǫ

∥

∥

∥

∥

)

, (2)

whereǫ is a very small regularizing constant, ande is a vector. The directional pixel parameters ofQ are derived
from the extrema of the second directional derivative. They are computed from the eigenvector decomposition
of the Hessian matrix of second derivatives. The vectorsd1 andd2 are set to the eigenvectors of the smaller
eigenvalue and larger eigenvalue magnitudes, respectively. The scalars r1 andr2 are set to the magnitudes of the
larger and smaller eigenvalues, respectively.

The set of curvesS ∈ Bx0,x1 is associated with the cost functional:

E(S) =

∫

x1

x0

Q(S(s),S ′(s))ds. (3)

The curve of minimumE over the setBx0,x1 is the microtubule segment. It can be computed over the cumulative
cost map of minimum possible valuesU0(x) : Dsegm → ℜ+ that starts atx0. That is, the minimal map is
U0(x) = minS∈Bx0,x {E(Sx0,x)}. This relation can be combined with the differential of equation (3) to give the
Hamilton-Jacobi equation:

‖∇U0‖ = Q. (4)

This relation can be solved numerically to obtain the minimal cumulative costU0.
The numerical solution of equation (4) forU0(x) is computed in terms of consecutive level sets [27]. A level

setU0(x) = t is the closed curveC(υ, t) : ℜ1 → ℜ2, whereυ is the arc-length parameter. The familyC(υ, t)

over t is computed with the time evolution equation∂C(υ,t)
∂t

= d(υ,t)
Q

, whered(υ, t) is the normal toC(υ, t) [27].
It is initialized with a curveC(., 0) ≡ ∂Dsegm. The numerical solution visits each pixel once [55] and their costs
Q(x, e) in equation (2) are minimized with respect toe originating from the eight-connected neighborhood. This
minimization ofQ is simple since it is a convex function of its parameters with a rhombus boundary[55, 56]. The
retrieval of the pixels in a sequence is done efficiently with a priority heap [55]. A curveS ′ is extracted by starting
from x0 = xrec and proceeding along∂S

′

∂s
= −∇U0 to arrive atx1 ∈ ∂Dsegm. The curveS ′ minimizesE(Sx0,x1)

and is appended to the microtubuleM. The microtubule extraction ends when it reaches lengthl = 8w.

2.4. Segmentation and Enhancement of the Microtubule Assembly

Several microtubule outer (+) tipsxi
tip,0, i = 0, . . . , n−1 can be selected at the first frame,I ′

0, of the sequence with
a user-interface that involves a mouse. The algorithm described earlier for line extraction is used to extract the part
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Fig. 3. A coordinate system centered at the most recently segmented point,xrec, of a microtubule. The valid
region is in yellow surrounded by the null region in black.
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2

(

tanh
(

I′

t(x)−α

2

)

+ 1
)

. It multiplies I ′
t and

transforms it toIt. The maximum multiplicative factor is one and hence it preserves the dynamic range of the
image. The transformation enhances the signal to noise ratio. In this exampleα = 8.

of the microtubulesMi, i = 0, . . . , n− 1, close to the microtubule outer tip in the first frame. The union of all the
microtubule segmentsMi, ∀i gives the microtubule assemblyA0 in the first frame of the sequence. The segmented
microtubules of the image in figure 2 (a) are shown in figure 2 (b) in different colors.The intensities overA0 give
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a distribution. A standard deviation below the mean of this distribution gives intensityα = µ(A0)−σ(A0), which
is used to transform the intensities in the sequence with a multiplicative sigmoid function to give:

It(x) = I ′
t

1

2

(

tanh

(

I ′
t(x) − α

2

)

+ 1

)

, ∀x, t. (5)

This multiplicative sigmoid is shown in figure 4. Its maximum value is one and hence it preserves the dynamic
range of the image. It also enhances the range of intensities that is largerthan α and attenuates the range of
intensities that is lower thanα. The range of intensities belowα corresponds to the background. Thus, the
intensity transformation further increases the signal to noise ratio in the sequence. Even though the background is
attenuated it is not set to zero. The diffraction makes the cross section of amicrotubule very similar to a Gaussian.
The falloff of the intensities away from the microtubule axis is smooth and extends into the background. Thus, the
background also contains information about the location of the microtubule axis. The transformation is monotonic
and hence subsequent steps of the algorithm are more robust to the precise value ofα compared to using the same
intensity as a threshold to set the background to zero.A block diagram of the algorithm is in figure 6. In that
diagram the feature enhancement of the microtubules together with their segmentation are the first two steps.

2.5. Depolymerization and Polymerization Region of a Microtubule OuterTip

The most active part of a microtubule is its outer tip. It probes the cytoplasm by polymerizing and depolymerizing
[1]. The extent of the axial microtubule motion is much greater than the extent of the lateral one. This is particularly
the case in depolymerization where the microtubule tip motion is a collapse along its axis. Thus, the trajectory
of the outer tip in depolymerization lies along the microtubule axis in the frame wherethe trackingstarts. This
is the first frame of the sequenceI0. That is, the possible depolymerization trajectory of theith microtubule tip
lies along its axis att = 0, Mi

0. The farthermost point fromxi
tip,0 alongMi

0 is the innermost reference point,
x

i
inner, and is used for the computation of the microtubule outer tip depolymerization trajectory. This is shown in

figure 5 (a).To model the limited lateral motion that a microtubule can have we consider theregion aroundMi
0

within ν = 2w to get regionDi
d. That region is expected to contain the possible depolymerization trajectory ofthe

ith microtubule outer tip.

(a) Microtubule segmentation and
extrapolation

(b) Curve expected to contain
a microtubule tip

Fig. 5. In (a) is the segmentation of a microtubule at the first frame starting fromx
i
tip,0 until xi

inner. The micro-
tubule is also extrapolated to getx

i
outer. In (b) is the curveLi

t along which a microtubule tip can lie at timet.
CurveLi

t is between boundary pointsxi
inner andx

i
outer.

The region where theith microtubule is expected to polymerize is estimated by extrapolating it starting from
the microtubule outer tip point at the first frame,x

i
tip,0. To extrapolate the microtubule we use a multiresolution

approach in the temporal dimension by segmenting it over the average frame of the sequenceIavg =
∑τ−1

t=0 It.
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The segmentation algorithm used is that described in section 2.3 and givesMi
p. The point farther fromxi

tip,0 along
Mi

p is the farthermost point of the extrapolated microtubule and provides the outermost reference pointxi
outer for

the computation of the trajectory of a microtubule outer tip. This is shown in figure5 (a). An example of an image
with extrapolated microtubules is shown in figure 2 (c).To model the limited lateral motion that a microtubule can
have we consider the region withinν = 2w around the extrapolated microtubuleMi

p to obtain the image domain
in which the microtubule can polymerize,Di

p.
The length of the axes of bothDi

d andDi
p is chosen to bel = 8w, which can adequately capture the cyclical

motion of a microtubule in steady state for several minutes.The union of regionsDi
d andDi

p gives the domain
expected to contain the trajectory of the microtubule outer tip,Di

traj = Di
d ∪ Di

p. In that region the pointxi
inner

is taken as a starting point to compute a cumulative cost mapU i
0,t, ∀t. The cost along the microtubule axis is

lower than it is in the background. This difference is robust both with respect to background noise and microtubule
curvature. Subsequently, we use this map to compute the minimal pathLi

t betweenxi
outer andx

i
inner. Both the

cumulative cost and the curve are computed as described for microtubule segmentation in section 2.3. The curve
Li

t, ∀t, is expected to contain a microtubule as well as its tip.The estimated regionDi
traj where a microtubule

and its tip may lie obtained from low temporal resolution is restricted to a curveLi
t in each frame. An illustration

showing curveLi
t bounded byxi

inner andx
i
outer is shown in figure 5 (b). An example of a frame from real data

containing several curvesLi
t is shown in figure 2 (d).

2.6. Extraction of the Trajectories of Microtubule Tips

The intensities and differential characteristics alongLi
t(s) at a tip point change from those of a microtubule to

those of the cytoplasm or extracellular matrix. The sudden change is due tothe large curvature of the isointensity
contours at that point which causes a large increase in the value of the cost U i

0,t. This change is used to compute
a microtubule outer tip feature alongLi

t(s), wheres is the arc-length parameter. The tip featuregi
t(s) is the

directional derivative ofU i
0,t along the curveLi

t(s). That is:

gi
t(s) = ∇ ∂Li

t
(s)

∂s

U i
0,t. (6)

This feature is computed for framest = 1, . . . , τ−1. It enhances the intensity of the tip point even though its signal
to noise ratio is low. The feature is very robust not only to background noise, but also to microtubule curvature
similarly toU i

0,t that was differentiated to compute it.
The microtubule outer tip point in the first framet = 0 is the starting point of the trajectory of the outer

tip. The outer tip pointsxi
tip,t, t = 1, . . . , τ − 1 in subsequent frames are constrained to lie alongLi

t. The
microtubule outer tip can only polymerize or depolymerize for a limited lengthρ in the time interval between
two consecutive frames. Thus, the tip position in a frame lies within a circle of radiusρ centered at the tip point

in the previous framexi
tip,t−1,

∣

∣

∣
x

i
tip,t − x

i
tip,t−1

∣

∣

∣
≤ ρ. The segment of the curveLi

t(s) enclosed by that circle

gives the candidate tip positions at timet. The point in that curve segment that maximizesgi
t(s) is selected to

givex
i
tip,t = arg max

x∈Li
t(s)

gi
t(s). This subsection together with the previous one, subsection 2.5, correspond to

steps 3-5 of the algorithm shown in figure 6. These three steps are repeated sequentially for the extraction of the
trajectories of the tips of the microtubules,i = 0, . . . , n − 1.

2.7. Statistics of the Trajectories of the Microtubule Outer Tips

As a result of tracking the outer ends of the microtubules we can directly compute the microtubule lengths between
the inner reference pointxi

inner and the tipxi
tip,t along the microtubule axis. We estimate the lengths of all the

outer segments of the microtubules and in all frames fromlit =
∫ x

i
tip,t

xi
inner

dLt(s)
ds

ds, ∀i, t. This method of measuring
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the length of microtubules along their axes is a more accurate approximationthan the currently used manual one
which assumes that the length of the microtubule is the Euclidean distance between an inner reference point in the
image and the manually annotated tip [9, 10, 11, 2, 3]. Thus, it ignores microtubule curvature.

The length measures are used to compute the average of the absolute value of the change of the length of the
microtubulesµ

(
∣

∣

∆l
∆t

∣

∣

)

= 1
m(τ−1)

∑

i,t |l
i
t − lit−1|. This represents the average polymerization and depolymerization

rate of the microtubules. The time serieslit is transformed over the time parameter to compute its Fourier spectrum
Gi

f , wheref is the temporal frequency. This gives the power spectral densityΨlit
(f) = ‖Gi

f‖
2, ∀i, of microtubule

length variation.The sinusoidal approximation to the motion of a microtubule tip represents its cyclical motion in
steady state. It also represents possible acceleration in polymerization and depolymerization.Each motion fre-
quency is weighted by the corresponding density to compute the average weighted frequencyf i

wt =
∑

f fΨlit
(f),

∀i. The global weighted frequency average over all the microtubules,µ(fwt) = 1
n

∑

i f
i
wt, is also computed.This

can give an average representative value for the tip dynamics in a region ofthe cytoplasm.

Fig. 6. This figure shows a block diagram summary of the algorithm. The microtubule enhancement and segmen-
tation are performed at steps 1-2. Subsequently, steps 3-5 of the algorithm are repeated sequentially to extract the
motion of the microtubule tipsi = 0, . . . , n − 1. The last step is the extraction of the average motion statistics of
the assembly.

3. EXPERIMENTS

The experiments were performed on a Xeon CPU of2.40 GHz and1.00 GB of RAM. The algorithm was imple-
mented using theC++ programming language andthe user interface for the selection of the microtubule tips in the
first frame was implemented in Tcl/Tk.
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3.1. Phantom Data

We tested the sensitivity of the system with two parameterized sets of phantom image sequences of microtubule
dynamics. To model the imaging process the phantom image sequences were corrupted. They were first smoothed
with a Gaussian filter of standard deviation1.5. Subsequently, Gaussian noise was superimposed. The signal to
noise ratioSNR is the ratio of the phantom microtubule intensity to the standard deviation of the Gaussian noise.
All the phantom image sequences consist of100 frames of spatial size150 × 150. To evaluate the performance of
the algorithm we measure the error in tip position per frame and per tip as a function of the phantom set parameter.
The error is computed using the ground truth in the phantom data.

The first set of phantom sequences tested the sensitivity of microtubule tip tracking under superimposed Gaus-
sian noise. A set of phantom image sequences with noise in the rangeSNR = 5 − 50 was used. Each sequence
contained five microtubules. The microtubules were sinusoidal curves. Thus, the segments of the microtubules
close to their tips deform as the microtubule polymerizes. The tenth and last frames of the phantom image se-
quence forSNR = 6.25 are shown in figure 7. In the first row, in figures 7 (a) and (b), are theimages showing the
tip positions computed by the algorithm in different colors. Figures 7 (c) shows the tip trajectories computed by the
algorithm in red together with the ground truth trajectories of the tips in green. These images show the accuracy of
the tracking for this sequence. The error of the tip positions as a function of theSNR is shown in figure 7 (d).The
algorithm accurately tracks the microtubule tips up to very lowSNR, lower than the typicalSNR of a confocal
microscopy sequence. The average computation time for each phantom sequence was2 min 46 sec.

The second set of phantom image sequences examined the sensitivity of thealgorithm with respect to the prox-
imity between neighboring microtubules. Each phantom sequence contained five microtubules. The microtubules
were straight lines. The noise level wasSNR = 20 and the microtubule width wasw ≈ 5. The distance between
the axes of consecutive microtubules was in the range ofδ = 4 − 10 pixels. The fiftieth and last frames of the
sequence with proximityδ = 7 pixels between microtubules are shown in figure 8 (a) and figure 8 (b), respec-
tively. The same images show the tip positions computed by the algorithm in different colors. In figure 8 (c) are
the trajectories of the microtubule tips in red together with the ground truth in green. These images show that in
this sequence forδ = 7 the tracking is accurate. Figure 8 (d) shows a plot of the error in tip positionas a function
of the proximity between neighboring microtubules.That plot demonstrates that the tracking algorithm succeeds
for distanceδ > w between neighboring microtubules. That is, when the distance between theaxes of neighboring
microtubules is greater than the standard deviation of their Gaussian crosssections. This shows the robustness
of the tracking with respect to the proximity of neighboring microtubules.The average computation time for each
phantom sequence was2 min 38 sec. This is very low, which shows the limited computational requirements of
the algorithm.

3.2. Real Microscopy Data

The algorithm was evaluated with several video sequences of real cells.Four of these sequences are shown in
this work. In figure 10 and figure 11 we show two examples of our in-vivoimaging experiments of microtubule
dynamics. The sample preparation and data acquisition were performed similarly to previously described at [57],
expect that epithelial PtK2 cells that stably expressedα-tubulin-yellow fluorescent protein (YFP) were used. The
cells were grown in Mattek coverslip dishes at 5%CO2 in MEM containing 10% FCS, Pen-Strep, and1× non-
essential acids. The cells were transferred for fluorescent imaging to an Olympus IX-70 microscope that had a
custom plexiglass box and heater to maintain the cells at37oC in 5% CO2. Typically, cells were excited by a
shuttered monochromator (Till Photonics at wavelength514 nm), Chroma YFP dichroic cube, and an100× 1.4
NA oil immersion objective lens. They were detected with an Orca-ER style CCDcamera (PCO). The samples
were illuminated for50 − 100 ms and the data was acquired every5 sec for several minutes.

The algorithm was verified with two additional imaging sequences. The imaging conditions of the sequence in
figure 9 are described at [58]. It was an A6 line cell, that is, a Xenopuskidney epithelial cell. It expressed green
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(a) Computed tips in tenth frame (b) Computed tips in last frame

(c) Complete trajectories for
the sequence
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in logarithmic scale

Fig. 7. The images in the first row show the tenth and last frames of the phantom sequence forSNR = 6.25.
The same images show the computed positions of the tips in different colors. The image in (c) is a spatiotemporal
viewpoint of the computed tip trajectories in red together with the ground truth in green. In (d) is the error of the
tip positions per frame and per tip as a function ofSNR.

fluorescent protein that was fused by means of a4× Gly spacer to theC-terminus ofβ-tubulin,β-tubulin-GFP. The
cells were cultured at23oC without CO2 atmosphere. Fluorescent live imaging at room temperature of the cells
was performed using DeltaVision full spectrum optical sectioning microscope system of Applied Precision, Inc.
The microscope was equipped with an Olympus IX70 PlanApo, and an100× 1.40 NA oil immersion objective
lens. The cells were detected with a cooled CCD camera of Quantix-LC, Photometrics. Time lapse recording was
performed at10 sec intervals. The same microscope system was used to convert the sequenceof images into a
QuickTime movie using JPEG compression. The sequence shows the dynamicsof microtubule plus ends next to a
wounded edge of the cell.

The imaging conditions of the sequence in figure 12 are described in detail at [14]. They were live Schneider
Drosophila S2 cells that stably expressed enhanced green fluorescent protein (EGFP)-taggedα-tubulin. It was cul-
tured in Schneiders Drosophila medium supplemented with 10% heat-inactivated FCS and penicillin/streptomycin.
A member of the kinesin-13 family, KLP59C, had been depleted using double-stranded (ds)RNA interference
(RNAi). Samples were mounted in Prolong (Molecular Probes) and imaged witha spinning disk confocal scanner
(Ultraview/Perkin Elmer, Boston, MA) mounted on a Nikon TE200 inverted microscope PlanApo with an100×
1.4 NA objective lens. Twoz-sections of thickness0.5µm were obtained with a piezo-electricz-axis controller for
4D data collection (x, y, z, time). Time lapse images were acquired at1sec intervals. The images are presented as
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(a) Computed tips in fiftieth frame (b) Computed tips in last frame

(c) Complete trajectories for
the sequence
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Fig. 8. In the first row are the fiftieth and last frames of the phantom sequence for proximity δ = 7 together with
the computed positions of the tips in different colors. The image in (c) shows aspatiotemporal viewpoint of the
computed tip trajectories in red together with the ground truth in green. In (d) isthe error of the tip position per
frame and per tip as a function of proximity.

the maximum intensity projections along thez axis. The sequence shows the dynamics of microtubule plus ends
near the periphery of an extended region that contacted neighboring cells.

The sizes of all the sequences are in table 1. Two frames of each of the four sequences are shown in the first
rows of figure 9, figure 10, figure 11, and figure 12, respectively.These figures show the tip positions in different
colors for the tenth and last frames as computed by the algorithm. The majority ofthe computed tip trajectories
were also traced manually with a mouse. The manual data was used as groundtruth for performance evaluation.
The entire trajectories of the tip points in the sequences are shown in red in spatiotemporal space in figure 9 (c),
figure 10 (c), figure 11 (c), and figure 12 (c), respectively. In thesame figures are also the manually annotated
ground truth trajectories in green. These figures show that the trajectories of the tips were tracked accurately.

The statistics of the computed tip dynamics are given in table 1. These included the average of the absolute
value of the change of the length of the microtubulesµ

(∣

∣

∆l
∆t

∣

∣

)

. They also include the weighted average of the
frequencyµ(fwt) of the motion power spectral density of all the microtubules in a sequence.The tips for which
the tracking error compared to ground truth was less than ten pixels were considered as having been tracked
correctly. Those tips were used to compute the tracking error per frame and per tip. The statistics of the evaluation
of tracking are also in table 1.The error in tracking is very low. The large majority of microtubules were tracked
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Sequence figure 9 figure 10 figure 11 figure 12

Sizex-y 350 × 262 636 × 472 640 × 512 137 × 113

Sizet 36 100 100 100

∆t is seconds 10 5 5 1

Tips tracked 8 19 13 10

Tips tracked correctly 7/8 16/19 11/13 8/10

Evaluation error (pixels) 3.4 2.4 3.7 3.2

µ
(
∣

∣

∆l
∆t

∣

∣

)

(µm.s−1) 0.051 0.21 0.20 0.10

µ(fwt) (s−1) 2.00 4.10 2.91 2.00

Run time 2 min 19sec 18min 7 sec 27min 9 sec 2 min 54sec

Table 1. The statistics describing the real sequences. The table also summarizes theoutput of the algorithm, the
performance of the algorithm, as well as its evaluation for the same sequences.

correctly. The algorithm is robust to microtubule proximity, low signal to noise ratio, and curvature at the tip point.
The algorithm has mainly failed to track microtubules that overlap. The outer microtubule tips tend to meet

other microtubules and polymerize along their axes. As a result multiple microtubules can follow the same track
and become indistinguishable with the imaging technique used. For the same reason the manual tracing of micro-
tubules [9, 10, 11, 2, 3] is done for clearly distinguished microtubule tips. It has not been investigated whether
ignoring overlapping microtubules introduces a bias in the estimates of the microtubule dynamics.The algorithm
has also limited ability to resolve the trajectories of tips which intersect under a lowangle. Table 1 gives the
computation time of the algorithm; it is very short and depends on the size of the data.

4. SUMMARY AND DISCUSSION

The microtubule assembly plays numerous critical roles in a cell. It provides structure and support to the cell. It
also coordinates cell migration and cell division. The most dynamic part of the microtubules are their outer tips.
The assembly is also involved in pathological cell states, for example in neurodegenerative diseases and cancer.
The microtubule assembly must be studied in a quantitative, high throughput, and informative manner. To this
end we have developed a system for the semi-automatic tracking of the motion ofthe microtubule outer tips in a
frame sequence.The first step of the system is to enhance the signal to noise ratio of the microtubule assembly
in the sequence. Subsequently, the microtubules are segmented in the first frame to compute the regions expected
to contain the microtubules’ trajectories of possible depolymerization. The microtubules are also segmented in
low temporal resolution using the average frame of the sequence to compute the regions expected to contain the
tips’ trajectories for possible polymerization. Those regions are further restricted to a curve in every frame and a
microtubule tip feature is computed along those curves. The tip features are linked to form the microtubule outer
tip trajectories. The tracking starts at the first frame and progresses sequentially between consecutive frames. The
tips’ trajectories are summarized to give average statistics of the dynamics of the tracked microtubules.

The algorithm we suggest significantly improves quantification compared tomanual tracing which is currently
used to measure microtubule polymerization and depolymerization rates. Our system performs automatic tracking
of multiple tips in the same sequence over extended time periods. It also improves accuracy in polymerization and
depolymerization rate estimates by measuring microtubule length using their axis. In addition, the system improves
objectivity in quantification by performing tip detection using the high curvature of the isointensity contours at the
tip point. That point is defined using not only intensity, but also its geometric differential properties.
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(a) Tips in tenth frame (b) Tips in last frame

(a) A spatiotemporal viewpoint of the trajectories

Fig. 9. A Xenopus frog epithelial cell imaged with epifluorescent microscopy [58]. The images in the first row
show the tenth and last frames together with the computed positions of the tips in different colors. In (c) is a
spatiotemporal viewpoint of the tip trajectories. In red are the computed trajectories and in green are the manually
tracked ones.

The system depends on four user set parameters. The parameter ranges capture the variability among micro-
tubule tracking video sequences. The main parameter of the algorithm is themicrotubule width,w. The actual
width of the microtubule is≈ 25 nm. However, its width in an image depends on the spatial resolution and
diffraction of the imaging process. The second parameter of the algorithmis the maximum allowed extent of poly-
merization or depolymerization of a tip. For the sequences tracked in this work it was set to8w. This parameter
must be larger that the most extensive depolymerization or polymerizationexpected to be tracked. However, it
must not be unnecessarily large to maintain the high signal to noise ratio required to compute the microtubule tip
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(a) Tips in tenth frame (b) Tips in last frame

(a) A spatiotemporal viewpoint of the trajectories

Fig. 10. A rat epithelial cell imaged with epifluorescent microscopy. The images in thefirst row show the tenth and
last frames together with the computed positions of the tips in different colors.In (c) is a spatiotemporal viewpoint
of the tip trajectories. In red are the computed trajectories and in green are the manually tracked ones.

feature. The third parameter is the maximum allowed cumulative lateral displacement of a microtubule during the
entire sequence. In this work it was set toν = 2w. The values of the second and third parameters must increase
with the total time duration of the acquisition of the sequence. The last parameter is the maximum allowed poly-
merization or depolymerization of a microtubule tip along its axis between two consecutive frames,ρ. It depends
on the time interval between the acquisition of two consecutive frames.

The algorithm was evaluated with phantom as well as real sequences. Thelarge majority of the microtubules
were tracked accurately. The algorithm is unable to resolve the trajectoriesof tips that overlap the axis of pre-
existing microtubules. The tracking, however, was very robust with respect to image noise, proximity between
neighboring microtubules, and curvature changes of the microtubules close to their outer tips. Moreover, the tip
tracking was successful for high rates of polymerization and depolymerization and the algorithm was time effi-
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(a) Tips in tenth frame (b) Tips in last frame

(a) A spatiotemporal viewpoint of the trajectories
Fig. 11. A rat epithelial cell imaged with epifluorescent microscopy. The images in thefirst row show the tenth and
last frames together with the computed positions of the tips in different colors.The two images were histogram
equalized to improve visualization. In (c) is a spatiotemporal viewpoint of the tiptrajectories. In red are the
computed trajectories and in green are the manually tracked ones.

cient. Also, the time duration of the tracking is adequate to allow microtubule studiesof biological significance as
well as studies for the development of new microtubule based drugs for cancer treatment.The algorithm can be im-
proved in several ways. One possibility would be to use different trackingmodes for polymerization rather than for
depolymerization [45]. This could represent the fact that the depolymerization speed is higher than the polymer-
ization speed. Another possibility would be to perform quantum analysis to enable the resolution of overlapping
microtubules. The motion tracking can be further improved by incorporating into the algorithm microtubule prop-
erties established in parallel in microtubule biology. That is, incorporate intothe algorithm probabilistic priors
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(a) Tips in tenth
frame

(b) Tips in last
frame

(a) A spatiotemporal viewpoint
of the trajectories

Fig. 12. A melanogaster cell depleted of the kinesin-13 family member KLP59C imaged with spinning disk
confocal microscopy [14]. The sequence consists of the maximum intensityprojections of the data. The images in
(a) and (b) show the tenth and last frames together with the computed positionsof the tips in different colors. In
(c) is a spatiotemporal viewpoint of the tip trajectories. In red are the computed trajectories and in green are the
manually tracked ones.

about microtubule structure and motion.
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